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Abstract 

Results on density integrals Fq(Q2) and correlation integrals Kq(Q2) are pre- 
sented for the first time in muon-nucleon scattering at N 490 GeV, using data 
from the E665 experiment at the Tevatron of Fermilab. A clear rise of the Fp in- 
tegrals with decreasing size of the phase-space cells (‘$intermittency”) is observed 
for pairs and triplets of negative hadrons whereas the effect is much weaker for 
mixed charge combinations. From these findings it is concluded that the ob- 
served intermittency signal is mainly caused by Bose-Einstein interference. Fur- 
thermore, no energy (W) dependence of Fz(Q*) is observed within the W range 
of the E665 experiment. Finally, the third-order correlation integrals Ks(Q*) 
are found to be significantly different from zero which implies the presence of 
genuine three-particle correlations in muon-nucleon interactions. 
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The study of correlations and fluctuations in hadron production at high energies 
has found considerable interest in recent years. In particular, the concept of “in- 
termittency” has b een introduced [l] into particle physics in order to describe the 
non-statistical fluctuations observed for individual events in the phase-space density 
distributions of hadrons produced in high energy reactions. Since then, intermittency 
has been investigated in all kinds of multi-particle production processes, from e+e- 
annihilation to nucleus-nucleus collisions [2], by measuring the so-called normalized 
factorial moments (and factorial cumulants [3, 21) in one, two or three phase-space 
dimensions, as functions of the number M of cells into which the overall phase-space 
region A considered is subdivided. Intermittency in its strict sense (i.e. self-similarity 
of the hadron-production process at various phase-space scales) implies an increase of 
the factorial moments with decreasing cell size S = A/M according to a power law. A 
somewhat wider notion has become customary by calling “intermittency”any increase 
of the factorial moments with decreasing cell size. 

In deep-inelastic muon-nucleon scattering intermittency has been studied in [4, 51, 
using data from the NA9 experiment of the European Muon Collaboration (EMC). 
In particular, it was found [5] that the second-order factorial moment shows a strong 
intermittent behaviour for pairs (--) of negative hadrons, but not for pairs (+-) 
of oppositely charged hadrons. From this result it was concluded that the observed 
intermittency signal was (mainly) due to Bose-Einstein (BE) interference, i.e. to BE 
correlations between negative pions. 

More recently, a considerable improvement in the method of analysis has been 
achieved by replacing the factorial moments and factorial cumulants by the more gen- 
eral so-called density integrals and correlation integrals, respectively [6, 7, 8, 9, 21’. 
The density and correlation integrals have several important advantages, coming partly 
from the fact that for their determination the overall phase space is no longer subdi- 
vided into cells with fixed boundaries (see below). The advantages are: an accidental 
and artificial separation of hadrons, that are nearby in phase space, by a fixed cell 
boundary is avoided; artificial fluctuations that are often observed in the cell-size de- 
pendence of factorial moments due to the fixed cell boundaries, are removed; and the 
statistical accuracy is considerably better for the density integrals than for the factorial 
moments due to the larger number of q-tuples of particles included (see below) which 
is particularly important for integrals of higher order q **, 

Taking one phase-space dimension (e.g. rapidity y) as a simple example, the general 
definition of the normalized density integral F,(&J) of order q is 

SndYl...dY,pq(Yl,...,y,) _ SP, 

Fq(sy) = J-n dY1 *. * dY,Pl(Yl) * * . Pl(Yq) = I 
(1) 

where pq ( YI , . , . , yq) is the q-particle density distribution. The integration domain 0 is, 
for instance, a q-dimensional subspace which is defined such that for a point (~1, . . . , yq) 

‘In the literature, the density integrals are often called correlation integrals, and the correlation 
integrals are called integrated cumulants. 

“It is worth mentioning that the integrals can be regarded as generalisations of the vertical factorial 
moments which, in contrast to the horizontal factorial moments, do not depend on the shape of the 
inclusive single particle distributions so that corrections [lo] are not, necessary. 
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in the subspace the closeness condition ]y; - yj] < Sy holds for any pair (;,j) amongst 
the q particles. (For q = 2, 0 is a strip of width &5y around the diagonal y1 = ys in 
the yr, y2 plane, limited by the boundaries of the overall y region considered). 

To evaluate the integral in the numerator of eq. (1) one has to count for each event 
all possible ordered q-tuples of particles (i.e. q-tuples where the order of the particles 
in a q-tuple is relevant) which fulfill the closeness condition, i.e. fall inside the volume 
52, and then average the numbers of q-tuples over all events. This algorithm follows 
from the fact, that (e.g. for identical particles) in the relation 

J 
dy, . e , &,~,(yl,. . . ) yq) = (n(n - 1). * ’ (n - q + 1)) G (&I) (2) 

r&l is the number of ordered q-tuples amongst n particles, according to combinatorics. 
( ) means averaging over all events. 

As usual, also in this paper the distance of particles is not considered in one phase- 
space dimension (y), but rather in three dimensions. A suitable variable to measure this 
3-dimensional distance is the Lorentz-invariant four-momentum difference Q;j defined 
as Qi’j = -(pi - pj)2 where pi,pj are the four-momenta p = (5, E) of particles i and j 
in a q-tuple. The closeness condition is then Q~j < Q2 and Fq is plotted vs. l/Q2 (or 

l/Q). 
There are various ways to define the closeness condition for q-tuples of particles 

(i.e. to compute the correlation integrals), namely the “GHP”, “Snake” and “Star” 
methods [6, 71. For q = 2, the three methods are identical; for q = 3, the Snake and 
Star methods are the same. In this paper the Star method is applied. For the Star 
integral, the domain R is given by the sum of all “spheres” of radius Q2 centered around 
each particle in an event [S]. In this case, the numerator in (1) can be written as 

s P,(&~* e - gq) 012 .q s Olq djil . - - dp’p , (3) 

where the step functions Oij = O(Q2 - Q$) (with 8 (z) = 0 (1) for 2 < O(a: > 0)) in 
the integral have the effect that only those q-tuples are counted, for which all q - 1 
particles have a distance from particle 1 - the center of the “star” - which is smaller 
than Q”. 

The actual numerical computations of F2(Q2) and Fa(Q2) in this paper were per- 
formed according to the “sphere counting” and “event mixing” algorithms given by 
eqs. (11) and (26) of [7] and eqs. (44) and (52) of [8]. The normalisation is then 
such that for full phase space (i.e. Sk,,) the integrals Fq(Q&) are the same as those 
obtained from the full multiplicity distribution, e.g. 

WQkJ = b-+ - WlbJ2 (4) 

where (n) and (n(n - 1)) are moments of the full multiplicity distribution. 

Higher-order density integrals (q > 3) contain contributions from lower-order cor- 
relations. We have therefore, in addition to the normalised density integrals Fq = 
SPPl J-d (es- (U 1 a so computed the normalized correlation integrals Kq(Q2) which 
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correspond to the factorial cumulants and which reflect the genuine q-particle correla- 
tions. In the abbreviated notation of eq. (1) they are defined as I(Q = J C,/ J pj, where 
C,(l,. . . q) is the q-particle correlation function, e.g. 

Cz(L 2) = P2(1,2) - Pl(l)P1(2) + K2 = F2 - 1 , (5) 

w1,2,3) = PS(L 2,3) - ~2(1,2h(3) - permutations + 2pl(l)p1(2)p1(3). (6) 
The relation 

K3=F3-3Fz+2, (7) 
following from eq. (6) by integration and normalisation, holds only for the full phase 
space, i.e. for QL. 

The data for this analysis come from the sample of ,uD and ,~p interactions ob- 
tained by E665 during the 1987/88 fixed target run at the Tevatron of Fermilab. The 
apparatus consists of a vertex detector with a streamer chamber and a forward spec- 
trometer, providing a SO-90% acceptance of charged particles with momenta greater 
than 200 MeV/c over the full solid angle. Details on the set-up and on the data 
analysis of the experiment, in particular the processing of the streamer-chamber and 
forward-spectrometer tracks, can be found in [ll] and [12]. 

Apart from slight differences in the definition of the kinematic region, the event 
selection is identical to the one described in [12]. The selection includes in particular 
the trigger requirements and the removal of radiative events using the information from 
the electromagnetic calorimeter. 

The kinematic region considered in the present analysis is defined by 

-q2 > 1 GeV’ 8 < W < 32 GeV 
x:sj > 0.001 0 > 3.5 mrad 

0.08 < YBj < 0.9 30 < v < 500 GeV . 

Here q2 is the leptonic four-momentum transfer squared, W is the effective mass of 
the total hadronic system, v = E, - EL is the energy transfer between incoming and 
outgoing muon with laboratory energies E, and El respectively, 0 is the laboratory 
scattering angle of the muon, XBj = -q2/(2Mv) (with the nucleon mass M) and 
YBj = v/E,* 

In the present analysis only charged hadrons are considered. Special care has been 
taken to remove e+e- pairs from photon conversions near the primary vertex. Fur- 
thermore, the track selection criteria were adjusted in order to avoid double counting 
of the same track. No acceptance corrections have been applied to the data, since 
Monte Carlo calculations have shown that they do not change the conclusions of the 
analysis. As particle identification for charged hadrons was not available, all particles 
were assigned the pion mass. Only particles with a center of mass rapidity between -3 
and 3 and a transverse momentum (with respect to the virtual-photon direction) less 
than 2 GeV/c were included in the analysis. In order to exclude the kinematic region 
where proton production contributes strongly, the Feynman-a: (as calculated using the 
pion mass) for positive particles was required to be greater than -0.2. An event with 
no accepted charged hadron was rejected, i.e. it was not included in the normalisation. 
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The sample of accepted events consists of N 3000 events on H2 and N 9000 events on 
D2. The sample is characterized by the following average values of kinematic variables: 
(-q2) = 8.15 GeV2, (W) = 17.5 GeV, (v) = 186 GeV, (zB~) = 0.04 and (y~j) = 0.40. 

We now turn to the results of this analysis. Fig. la shows a log-log plot of the 
second-order density integral F2(Q2) for (--) and (+-) pairs vs. 1/Q2. For both 
charge combinations F2 (Q”) rises with increasing 1/Q2, the points falling roughly on 
straight lines. This power-law dependence of F2(Q2) on Q2 is expected for genuine 
intermittency, e.g. for a self-similar cascading process. The rise is much stronger for 
(--) than for (+-) pairs. From this it can be concluded that the intermittent be 
haviour is mainly due to BE correlations in the (--) pairs (mainly pions) as observed 
in this experiment [13] for Q2 < 1 GeV2. 

The same qualitative features were observed for the second-order factorial moments 
of (--) and (+-) pairs in PN interactions at the lower energy (E, = 280 GeV, (W) = 
13.4 GeV) of the EMC NA9 experiment [5]. In fact, the slopes din F2(Q2)/d(l/Q2) of 
the (--) and (+-) d ensity integrals show very close agreement for the NA9 and E665 
experiments [ 141, inspite of the somewhat different (W) values and the experimental 
differences of the two experiments. 

Fig. lb shows a log-log plot of the third-order density integral F3(Q2) for triplets 
(- - -) of negative hadrons and (ccc) of charged hadrons, where in the latter case it 
does not matter whether the charge of a hadron in the triplet is positive or negative 
(i.e. the three charged hadrons are treated as identical particles). Again, the rise is 
steeper for (- - -) than for (ccc) triplets as expected, since BE correlations amongst 
like-sign pions influence the (- - -) triplets more strongly than the (ccc) triplets. 
Furthermore, the rise is rather linear in both cases as expected for intermittency. 

Because of limited statistics it is not meaningful to present any higher-order mo- 
ments. 

For the energy (W) dependence of F2 the following behaviour is expected: For 
(+-) pairs the slope of Fz(Q”) should increase with W due to the gradual appearance 
of hadron jets which introduce correlations amongst the hadrons. For (--) pairs the 
situation is more complicated due to the additional presence of the BE interference. 
In order to obtain experimental information on the W dependence, the data are split 
into two subsamples: events with W < 20 GeV ((W) = 13 GeV, low W) and events 
with W > 20 GeV ((W) = 23 GeV, high W). Fig. 2 shows F2(Q2) of (+-) and (--) 
pairs for the two subsamples. To facilitate the comparison, the data points are shifted 
such that F2(Q2 = 1 GeV2) = 1. No significant energy dependence of the Fz slope is 
observed for Q 2 ?. 0.01 GeV2; for smaller Q2, the F2 slope of (--) pairs seems to be 
somewhat larger for the high-lY sample than for the low-W sample. 

We now turn to the second and third-order correlation integrals. K2(Q2) is shown 
for (--) and (+-) p airs in Fig. 3a; it is trivially related to F2(Q2) (Fig. la) by 
K2 = F2 - 1. Fig. 3b shows a log-log plot of Ks(Q2) for (- - -) and (ccc) triplets. 
K3(Q2) is definitely d’ff 1 erent from zero and rises with l/Q2 both for (- - -) and 
(ccc) triplets which implies that genuine three-particle correlations are present in pN 
scattering. This is in contrast to e.g. nucleus-nucleus collisions where three-particle 
correlations were found to be practically absent [15, 141. The curve in Fig. 3b represents 
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the expression F3 - 3F2 + 2 for charged hadrons as determined from the data. From 
a comparison with the K3 data points for (ccc) triplets it is seen that in the Q2 range 
considered relation (7) is only approximately fulfilled for charged hadrons. 

In order to find the origin of the three-particle correlations in Fig. 3b PN Monte 
Carlo (MC) events were generated according to the Lund model (version LEPTO 6.1 
[IS]) without BE correlations. The MC predictions for F3(Q2) and &(Q2) are shown 
in Fig. 4. For (- - -) triplets, Ks(Q2) of the MC events is rather independent of 1/Q2, 
in contrast to the data (Fig. 3b). This shows that the rise of K3(Q2) in the data is 
very likely due to three-particle BE correlations which were not incorporated into the 
Lund MC used. For (ccc) triplets the situation is more complicated, since in the data 
both BE correlations (weaker than in (- - -)) an resonance decays (e.g. 7’ decays, d 
absent in (- - -)) contribute. In the MC (without BE, but with resonance decays) 
(Fig. 4% &(Q2) is smaller than in the data but rises due to resonance decays. 

In summary, we investigate in this paper the two and three particle correlations of 
hadrons produced in deep-inelastic muon-nucleon intera,ctions by measuring the second 
and third-order density and correlation integrals. The following results were obtained: 

l In a log-log plot, both F2(Q2) and F3(Q2) h s ow an approximately linear rise with 
l/Q2 which is characteristic of intermittency. 

l F2(Q2) rises more steeply with l/Q2 for (--) than for (+-) pairs. The same is 
true for F3(Q2) for (- - -) triplets as compared to (ccc) triplets. This different 
behaviour is due to Bose-Einstein correlations between identical bosons (nega- 
tive pions). The intermittency signal is thus mainly caused by Bose-Einstein 
interference. 

a No significant energy (W) d p e en d ence of the F2 slope for (+-) pairs is observed 
between (W) x 13 GeV and 23 GeV. 

l K3(Q2) for (- - -) and (ccc) triplets is definitely different from zero and rises 
with 1/Q2; this implies the presence of genuine three-particle correlations in ,uN 
interactions. 
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!ladrons. 
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Fig. 1: Log-log plot of a) Fz(Q2) and b) fiz(Q*) for I- - -) and (ccc). vs. l/Q*, from 

the Lund Monte Carlo program (including resonances, but without Bose-Einstein 
correlations ). 
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